Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Rep ; 13(1): 5761, 2023 04 08.
Article in English | MEDLINE | ID: covidwho-2291449

ABSTRACT

Human mobility plays a key role in the dissemination of infectious diseases around the world. However, the complexity introduced by commuting patterns in the daily life of cities makes such a role unclear, especially at the intracity scale. Here, we propose a multiplex network fed with 9 months of mobility data with more than 107 million public bus validations in order to understand the relation between urban mobility and the spreading of COVID-19 within a large city, namely, Fortaleza in the northeast of Brazil. Our results suggest that the shortest bus rides in Fortaleza, measured in the number of daily rides among all neighborhoods, decreased [Formula: see text]% more than the longest ones after an epidemic wave. Such a result is the opposite of what has been observed at the intercity scale. We also find that mobility changes among the neighborhoods are synchronous and geographically homogeneous. Furthermore, we find that the most central neighborhoods in mobility are the first targets for infectious disease outbreaks, which is quantified here in terms of the positive linear relation between the disease arrival time and the average of the closeness centrality ranking. These central neighborhoods are also the top neighborhoods in the number of reported cases at the end of an epidemic wave as indicated by the exponential decay behavior of the disease arrival time in relation to the number of accumulated reported cases with decay constant [Formula: see text] days. We believe that these results can help in the development of new strategies to impose restriction measures in the cities guiding decision-makers with smart actions in public health policies, as well as supporting future research on urban mobility and epidemiology.


Subject(s)
COVID-19 , Communicable Diseases , Epidemics , Humans , Cities/epidemiology , COVID-19/epidemiology , Communicable Diseases/epidemiology , Transportation
2.
Sci Rep ; 11(1): 24443, 2021 12 27.
Article in English | MEDLINE | ID: covidwho-1852476

ABSTRACT

We investigate, through a data-driven contact tracing model, the transmission of COVID-19 inside buses during distinct phases of the pandemic in a large Brazilian city. From this microscopic approach, we recover the networks of close contacts within consecutive time windows. A longitudinal comparison is then performed by upscaling the traced contacts with the transmission computed from a mean-field compartmental model for the entire city. Our results show that the effective reproduction numbers inside the buses, [Formula: see text], and in the city, [Formula: see text], followed a compatible behavior during the first wave of the local outbreak. Moreover, by distinguishing the close contacts of healthcare workers in the buses, we discovered that their transmission, [Formula: see text], during the same period, was systematically higher than [Formula: see text]. This result reinforces the need for special public transportation policies for highly exposed groups of people.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Brazil/epidemiology , COVID-19/epidemiology , COVID-19/virology , Disease Outbreaks , Health Personnel/statistics & numerical data , Humans , Models, Theoretical , SARS-CoV-2/isolation & purification , Transportation
3.
PLoS Comput Biol ; 18(4): e1009865, 2022 04.
Article in English | MEDLINE | ID: covidwho-1785186

ABSTRACT

The spread of COVID-19 caused by the SARS-CoV-2 virus has become a worldwide problem with devastating consequences. Here, we implement a comprehensive contact tracing and network analysis to find an optimized quarantine protocol to dismantle the chain of transmission of coronavirus with minimal disruptions to society. We track billions of anonymized GPS human mobility datapoints to monitor the evolution of the contact network of disease transmission before and after mass quarantines. As a consequence of the lockdowns, people's mobility decreases by 53%, which results in a drastic disintegration of the transmission network by 90%. However, this disintegration did not halt the spreading of the disease. Our analysis indicates that superspreading k-core structures persist in the transmission network to prolong the pandemic. Once the k-cores are identified, an optimized strategy to break the chain of transmission is to quarantine a minimal number of 'weak links' with high betweenness centrality connecting the large k-cores.


Subject(s)
COVID-19 , Contact Tracing , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control , Contact Tracing/methods , Humans , Quarantine/methods , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL